
VT LIVEHUNT CHEAT SHEET
VirusTotal HUNTING

 VirusTotal provides to malware researchers two hunting services based on Yara rules:

Livehunt - (Future): Continuously scans incoming samples, notifying you of files matching your rules. Ideal for monitoring ongoing campaigns, tracking leaked
data, and ensuring brand protection.

Retrohunt - (Past): Investigates a year-long dataset of 500+ million files, and reports those matching your rules. Ideal for precise attribution and uncovering
historical activity.

Files submitted to VirusTotal for the first time. vt.metadata.new_file

Files detected by 10 or more antivirus engines. vt.metadata.analysis_stats.malicious >= 10

LNK files that are executing PowerShell from Exif CommandLineArguments metadata
field.

vt.metadata.exiftool["CommandLineArguments"] icontains "powershell"

File's name as it was last submitted to VirusTotal. vt.metadata.file_name icontains "invoice"

File with a size greater than 100KB. vt.metadata.file_size > 100KB

Files that are DLL executables. Full types list here. vt.metadata.file_type == vt.FileType.PE_DLL

Files downloaded in the wild from discordapp.com. vt.metadata.itw.url.raw startswith “https://cdn.discordapp.com"

Files containing “cmd.exe” in the Content-Disposition header, possible download of a
file with that name in the wild.

vt.metadata.itw.url.response_headers["Content-Disposition"] icontains "cmd.exe"

JARM fingerprint of the domain where the file was downloaded in the wild. vt.metadata.itw.domain.jarm ==
"2ad2ad16d00000022c2ad2ad2ad2adc048c697e0d6d0c91c6bf49b0695f45c"

Files that contains the ChatGPT logo as an icon to impersonate. The dhash is a hash of
the image.

vt.metadata.main_icon.dhash == "b2f1d4eaa8d470b2"

Files associated with the "Redline" family and containing configuration data extracted
from Mandiant Backscatter.

for any family_name in vt.metadata.malware_families: (family_name == "redline")

Downloads occurring in the wild, where the IP's ASN is associated with the REGRU-RU
provider.

vt.metadata.itw.ip.ip_as_owner == "REGRU-RU"

Files that contains the keyword ransom in the Kaspersky Antivirus engine. for any engine, signature in vt.metadata.signatures: (engine == "Kaspersky" and
signature icontains "ransom")

Files having specific imphash. vt.metadata.imphash == "85f60041d9bc9a44bdc4c312071802cb"

Files that were submitted from Russia. vt.metadata.submitter.country == "RU"

Files that exploit CVE-2023-38831. for any tag in vt.metadata.tags: (tag == "cve-2023-38831")

Files that are downloaded in the wild from an URL with the tag downloads-pe, which
means that is downloading a PE executable.

for any itw_url_tag in vt.metadata.itw.url.tags: (itw_url_tag == "downloads-pe")

FIELDS USAGE EXAMPLES

Livehunt rule: malicious docx files with macros Livehunt rule: files with CLI powershell execution

rule malicious_docx_macros {
meta:
 description = “Malicious documents using macros”
condition:
 vt.metadata.file_type == vt.FileType.DOCX and
 vt.metadata.analysis_stats.malicious > 5 and
 for any tag in vt.metadata.tags:(tag == “macros”)
}

rule LNK_metadata_execution_powershell {
meta:
 description = “Possible LNK execution through
 CommandLineArguments Exif metadata field”
condition:
 vt.metadata.exiftool["CommandLineArguments"]
 icontains "powershell" or
 vt.metadata.exiftool["RelativePath"] icontains
 "powershell"
}

See the full list of metadata fields here

METADATA

 The YARA VT module was created specially for VirusTotal Hunting services to operate with all available VT context data:

 Metadata (AVs rate, ExifTool, submissions, type, signature, VT tags, etc)

 Behaviour (network, file system, registry, sandbox verdict, Android/Windows specific, etc)

The VT module

virustotal.com linkedin.com/company/virustotaltwitter.com/virustotal

https://yara.readthedocs.io/en/stable/
https://docs.virustotal.com/docs/writing-yara-rules-for-livehunt#file-types
https://docs.virustotal.com/docs/writing-yara-rules-for-livehunt

VT LIVEHUNT CHEAT SHEET

Registry key created in RunOnce with the name “OperaSetups” for possible persistence. for any registry_key in vt.behaviour.registry_keys_set : (registry_key.key icontains
"\\CurrentVersion\\RunOnce\\OperaSetups")

Value of the registry key which contains a VBS file stored in \AppData\Roaming\ path. for any registry_value in vt.behaviour.registry_keys_set : (registry_value.value icontains
"\\AppData\\Roaming\\" and registry_value.value endswith ".vbs")

Files with RANSOM verdict extracted from the behaviour. for any v in vt.behaviour.verdicts : (v == vt.BehaviourVerdict.RANSOM)

Files with CryptoCurrencyMiner verdict label by sandboxes. for any label in vt.behaviour.verdicts_labels : (label contains "CryptoCurrencyMiner")

Files that are doing Process Injection (T1055). for any technique in vt.behaviour.mitre_attack_techniques : (technique.id == "t1055")

Files that have in memory URLs and the pattern /recovery/store.php? in the path. for any memory_url in vt.behaviour.memory_pattern_urls : (memory_url icontains
"/recovery/store.php?")

Samples that have created \AppData\Local\Temp\coeghglefsmk.sys during execution. for any files_written in vt.behaviour.files_written : (files_written icontains
"\\AppData\\Local\\Temp\\coeghglefsmk.sys")

DNS resolutions against us-zephyr.miningocean.org during execution. for any dns_lookups in vt.behaviour.dns_lookups : (dns_lookups.hostname ==
"us-zephyr.miningocean.org")

Samples that have this particular Sigma rule identified during the execution. Full list of
Sigma rules.

for any sigma in vt.behaviour.sigma_analysis_results : (sigma.rule_id ==
"8b5db9da5732dc549b0e8b56fe5933d7c95ed760f3ac20568ab95347ef8c5bcc")

Samples communicating with 5432 port. for any com in vt.behaviour.ip_traffic : (com.destination_port == 5432)

Files executing cmd.exe with specific params. for any cmd in vt.behaviour.command_executions : (cmd icontains "cmd.exe /Q /c")

Files creating the HGL345 mutex during execution. for any mutex in vt.behaviour.mutexes_created : (mutex icontains "HGL345")

Files creating a service called eckwIIMB during execution. for any svc in vt.behaviour.services_created : (svc == "eckwIIMB")

Strings that are either encoded or decoded. Possible configuration identified of the
sample.

for any text_decoded in vt.behaviour.text_decoded: (text_decoded icontains
"\"Ports\"" and text_decoded icontains "\"Server\"")

Samples containing specific string related to DDNS service in the IDS alert generated by
the sample.

for any ids_alert in vt.behaviour.ids_alerts: (ids_alert.rule_msg icontains "dyndns.org")

Suspicious API calls identified during the execution of the sample. Possible process
injection.

for any api_call in vt.behaviour.calls_highlighted: (api_call == "ResumeThread" and
api_call == "SetThreadContext" and api_call == "WriteProcessMemory" and api_call ==
"VirtualAllocEx" and api_call == "SuspendThread")

Processes in which some kind of code was injected. for any p_injected in vt.behaviour.processes_injected: (p_injected == "powershell.exe")

HTTP communications using OPTION method. List of available methods. for any conv in vt.behaviour.http_conversations : (conv.request_method ==
vt.Http.Method.OPTIONS)

Files that contains the string “Moxilla” in the User-Agent header during
communications.

for any conv in vt.behaviour.http_conversations : (conv.request_headers["user-agent"]
== "Moxilla")

FIELDS USAGE EXAMPLES

Livehunt rule: files modifying Registry Run Keys
for persistence

Livehunt rule: Files created within the "profile.d"
directory to maintain persistence.

rule profile_folder_shell_script {
meta:
 description = “Detects Linux shell scripts creation in
 profile.d path”
condition:
 for any dropped in vt.behaviour.files_dropped :
 (dropped.path contains "/etc/profile.d/"
 and dropped.path endswith ".sh") or
 for any file_path in vt.behaviour.files_written :
 (file_path contains "/etc/profile.d/"
 and (file_path endswith ".sh"))
}

rule persistence_runonce_vbs {
meta:
 description = “Detect persistence by establishing a VBS
 file in the runonce key”
condition:
 for any registry_key in
 vt.behaviour.registry_keys_set: (registry_key.key
 icontains "\\CurrentVersion\\RunOnce\\") and
 registry_key.value icontains “.vbs”
}

See the full list of behaviour fields here

BEHAVIOUR

virustotal.com linkedin.com/company/virustotaltwitter.com/virustotal

https://docs.virustotal.com/docs/writing-yara-rules-for-livehunt#behaviour-verdicts
https://docs.virustotal.com/docs/sigma-rule-list
https://docs.virustotal.com/docs/writing-yara-rules-for-livehunt#http-methods
https://docs.virustotal.com/docs/writing-yara-rules-for-livehunt#the-vt-module

VT LIVEHUNT CHEAT SHEET

Download here: virustotal.com/go/livehunt-cheatsheet

virustotal.com linkedin.com/company/virustotaltwitter.com/virustotal

HUNTING WITH STRUCTURE

Step 1:
Create a new Livehunt rule for

files

Step 2:
Click “Structure” Icon on the left

menu

Step 3:
Paste the hash of a file that match a

specific metadata or behaviour field that
you are looking for your rule.

Step 4:
Optionally you can now use the filter

view to find the attribute of the report
you are interested in to create your
Livehunt rule or navigate and click

directly on the attribute.

Step 5:
You will have automatically your rule based on that condition you

selected.

A simple way to create a Yara rule for Hunting is to use the Structure panel. Navigate through the attributes in the VT module and
click on the values to populate a Yara rule condition. You can select metadata and behavior attributes and start using information
related to signatures, processes, registry, files, network traffic and more.

Step 7:
Test your rule by providing more hashes that should match. This will
confirm if it's working correctly before putting rule into production.

Step 6:
Customize your rule by adding more conditions. The visual editor offers

auto-complete to guide you through available options.

https://blog.virustotal.com/2023/09/its-all-about-structure-creating-yara.html

